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ABSTRACT
COVID-19 has led to excess deaths around the world. However, the
impact on mortality rates from other causes of death during this
time remains unclear. To understand the broader impact of COVID-
19 on other causes of death, we analyze Italian official data covering
monthly mortality counts from January 2015 to December 2020. To
handle the high-dimensional nature of the data, we developed a
model that combines Poisson regressionwith tensor train decompo-
sition to explore the lower-dimensional residual structure of thedata.
Our Bayesian approach incorporates prior information on model
parameters andutilizes an efficientMetropolis-HastingswithinGibbs
algorithm forposterior inference. Simulation studieswere conducted
to validate our approach. Our method not only identifies differen-
tial effects of interventions on cause-specific mortality rates through
Poisson regression but also provides insights into the relationship
between COVID-19 and other causes of death. Additionally, it uncov-
ers latent classes related to demographic characteristics, temporal
patterns, and causes of death.
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1. Introduction

Following the outbreak, COVID-19 has had profound consequences on various aspects
such as economics, environment, and politics [1,4,15]. Focusing on its impacts on health
and health systems, excess mortality due to the pandemic is under scrutiny as it pro-
vides an overall picture of the pandemic’s impact on human health, encompassing factors
such as government interventions and disruptions to non-COVID care [30,40,41]. While
excess mortality provides a general understanding, it is equally important to examine
changes in cause-specific mortality during the pandemic. This examination enables the
development of targeted strategies to mitigate similar impacts in the future. Notably, the
pandemic may have indirectly led to increases in causes of death such as heart disease,
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diabetes, and Alzheimer’s disease [38]. In terms of non-natural causes of death, a substan-
tial increasewas found in accidental drug-related fatalities during all stages of the lockdown
in Ontario, while homicide or suicide rates experienced only moderate changes [11]. Nev-
ertheless, collecting consistent cause-specificmortality data based on death certificates can
be challenging [14,17,42]. Our analysis focuses on a nationally curated dataset comprising
monthly death counts in Italy from 2015 to 2020, categorized according to the Interna-
tional Classification of Diseases 10th Revision (ICD-10). The dataset is high-dimensional
and sparse in nature, which motivates the development of new methods to uncover the
underlying relationships during this period.

The Poisson regressionmodel provides a solid foundation formodeling count data [13].
Researchers have also proposed variants of Poisson regression such as overdispersed
Poisson regression and zero-inflated Poisson regression with random effects to account
for important data features [8,19,27]. However, in practice, linear relationships between
response and covariates are typically assumed. Furthermore, the limited number of
observed covariates can hinder a comprehensive understanding of the data. In light of
this, we construct additional model components to account for the Poisson residuals.
The high-dimensional and sparse residuals are organized as a multi-way tensor, which
allows for the utilization of various decomposition techniques to achieve dimension
reduction.

Theoretical and practical advantages of these techniques, including canonical polyadic
(CP) decomposition, Tucker decomposition, and higher-order singular value decomposi-
tion (HOSVD), have been extensively studied [5,10,21,26]. They reduce the dimensionality
of the parameter space and uncover latent structures in a stable and unique manner under
mild conditions. Consequently, the interpretability of the results is enhanced and the effi-
ciency in both data storage and computation is improved. Themost common application of
these tensor decomposition techniques appears in the context of tensor regression, either as
scalar-on-tensor regression or tensor-on-scalar regression. In scalar-on-tensor regression,
a Bayesian approach that utilizes PARAFAC decomposition and imposes a novel class of
multiway shrinkage priors is developed and illustrated in a neuroimaging application [16].
For tensor-on-scalar regression, multilinear algebra techniques and a set of tensor regres-
sion approaches have been combined to model the variational patterns of point clouds
and link them to process variables [43]. Beyond tensor regression, these techniques can
be directly applied to data. For instance, a Tucker product for dimensionality reduction
within a general multilinear tensor regression framework has been proposed for analyzing
longitudinal relational data [22].

Different from tensor regression literature, our proposed method aligns more closely
withwork assuming lower-dimensional tensor structure onPoisson count data. CPdecom-
position and Tucker decomposition have been implemented on dyadic event counts to
achieve dimension reduction and reliable statistical inference [35,36]. A content request
prediction algorithm was proposed that employed tensor train decomposition [29]. Moti-
vated by existing literature, we combine Poisson regression with tensor train decomposi-
tion and focus on explanatory analysis of the data. The train decomposition is specifically
chosen because it is numerically more stable than the classical CP decomposition method
and it provides a more accurate representation of the data as tensor cores in train decom-
position follow a hierarchically dependent construction by assumption and this feature
aligns naturally with the data structure [6,31]. In addition to improved interpretability, the
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method can be easily scaled to high-dimensional situations, provided that the tensor ranks
are kept at a moderate size.

Our primary objective is to understand the effects of covariates, particularly govern-
ment lockdown policies during the pandemic, on the mortality rates of various causes of
death through the Poisson regression component. Additionally, we aim to uncover further
information by inferring latent spaces using tensor specification and tensor train decom-
position. For instance, the proposed method enables us to cluster Italian regions based
on their dynamic mortality patterns over the observed time window. These clusters have
different weights on latent classes characterized by mortality trajectories. A high weight
indicates that the corresponding latent class plays an important role in defining the cluster,
while a low weight suggests the latent class is irrelevant. Temporal evolution of mortal-
ity rates in each latent class also reveals interactions between causes of mortality, such
as COVID-19 deaths and other infectious diseases, which Poisson regression alone may
not adequately capture. More detailed inferences on latent spaces induced by the pro-
posed method are elaborated in Section 5.3. Our inferences are made within a Bayesian
framework, where we impose priors on model parameters. Given our focus on explana-
tory analysis rather than predictive performance, we carefully specify the priors and select
a set of prior hyperparameters to avoid inherent issues related to unidentifiability in gen-
eral latent factor models. To draw posterior samples, we employ an adaptive Metropolis
within Gibbs algorithm.

The rest of the paper is organized as follows. In Section 2, we formulate the model and
elucidate how to obtain dimension reduction via tensor train decomposition. In Section 3,
we describe the prior specification and theMarkov chainMonte Carlo (MCMC) algorithm
for posterior inference. Results of simulation studies and real data application are shown
in Sections 4 and 5, respectively. Finally, Section 6 provides some concluding remarks and
future directions.

2. BPRTTDmodel for count data

In this section we will introduce a Poisson regression model with a tensor train decom-
position to capture a low-dimensional structural component in the unexplained Poisson
variation. In general, anM-dimensional tensorA of size Q1 × Q2 × · · · × QM−1 × QM is
said to admit a train decomposition if entries aq1,q2,...,qM−1,qM ofA can be expressed as the
sum of R1R2 · · ·RM−1 terms such that

aq1,q2,...,qM−1,qM =
R1∑

r1=1

R2∑
r2=1

· · ·
RM−1∑

rM−1=1
g(1)
q1,r1g

(2)
q2,r1,r2 · · · g(M−1)

qM−1,rM−2,rM−1
g(M)
qM ,rM−1

.

We call g(1)·,· , g(2)·,·,·, . . . , g(M)·,· tensor train cores and R1,R2, . . . ,RM−1 tensor train ranks.
Similar to the core tensor in Tucker decomposition, g(1)·,· , g(2)·,·,·, . . . , g(M)·,· provide insights
concerning the relationships among tensor dimensions. For instance, the first tensor mar-
gin and the second tensor margin are linked by R1 latent classes, like the railway coupling
that is located at each end of a rail vehicle and connects them together. Tensor train
decomposition also facilitates dimension reduction. The dimensions of the tensor train
cores are Q1R1, Q2R1R2, . . . ,QMRM−1 respectively, which effectively reduces the dimen-
sion Q1Q2 . . .QM−1QM of tensor A to the dimension Q1R1 + Q2R1R2 + · · · + QMRM−1
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of the subspace. Several algorithms such as tensor train-singular value decomposition
(TT-SVD) algorithm and Tucker-2 algorithm have been proposed for tensor train approx-
imation [5,31]. It is essential to note that the order of dimensions in the tensor matters.
The decomposition is performed sequentially from the first dimension g(1)

q1,r1 to the last
one g(M)

qM ,rM−1 , with tensor train cores of a particular dimension depending on the cores
of its preceding dimension. Therefore, arranging the data in a suitable structure is cru-
cial for meaningful decomposition. Tensor train decomposition offers several theoretical
advantages. It encompasses specific tensor decompositions like the canonical polyadic (CP)
decomposition and the Tucker decomposition [5,45]. When R1 = R2 = · · · = RM−1 =
R, g(m)

qm,r1,r2 = 0 for any m = 2, . . . ,M − 1 and r1 �= r2, a CP decomposition is represented
in terms of the tensor train decomposition. It can also be shown that there exists an alge-
braic equivalence between the Tucker and the tensor train decomposition [45]. Despite
being interpretable, the CP format and the Tucker format have several disadvantages.
For example, the set of tensors of a fixed CP rank is not closed and the computational
cost of applying Tucker decomposition grows exponentially fast with the tensor order [3].
In contrast, tensor train decomposition remains stable and straightforward, enabling
the summarization of high-dimensional data with a limited number of latent variables.
As a consequence, the interpretation of results in practical applications becomes more
accessible [31]. Recognizing these merits, we value the tensor train decomposition and
incorporate it into our proposed model, which is formulated below.

Suppose the observed count data can be arranged as a three-way discrete-valued tensor
Yi,t,k of dimension N × T × K and i = 1, . . . ,N, t = 1, . . . ,T, k = 1, . . . ,K. Additionally,
we have information on covariates xi,t,k ∈ R

P and offsets ui,t,k. The standard Poisson
regression model assumes that Yi,t,k ∼ Pois(ui,t,k exp(xi,t,k · β)), describing the relation-
ship between covariates xi,t,k and the dependent variable Yi,t,k. However, the regression
can potentially fail to account for residual variation, namely Pearson residual or deviance
residual that measures the discrepancy of a generalized linear model [28]. This is because
only a limited number of variables are included in xi,t,k. Even though adding more inter-
action terms may improve the goodness-of-fit of the Poisson regression model, it quickly
becomes unmanageable and hard to interpret if the dimension of Yi,t,k is large.

To address this issue, we propose to combine Poisson regression with the tensor train
decomposition technique and form a novel Poisson Regression Tensor Train Decomposi-
tion (PRTTD)model that provides an adaptive, low-dimensional alternative, capturing the
residual variation in an interpretable way. The model extends Poisson regression with an
extra rate parameter λ∗

i,t,k

Yi,t,k ∼ Pois
(
ui,t,k exp

(
xi,t,k · β

)
λ∗
i,t,k

)
, (1)

and assumes that the rate λ∗
i,t,k can be expressed according to tensor train decomposition

such that

λ∗
i,t,k =

H1∑
h1=1

λ
(1)
i,h1

H2∑
h2=1

λ
(2)
t,h1,h2λ

(3)
k,h2

= λ
(1)′
i �

(2)
t λ

(3)
k ,
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where λ
(1)
i = (λ

(1)
i,1 , . . . , λ

(1)
i,H1

)′ ∈ R
H1+ ,λ(3)

k = (λ
(3)
k,1 , . . . , λ

(3)
k,H2

)′ ∈ R
H2+ and

�
(2)
t =

⎛
⎜⎜⎜⎜⎝

λ
(2)
t,1,1 λ

(2)
t,1,2 . . . λ

(2)
t,1,H2

λ
(2)
t,2,1 λ

(2)
t,2,2 . . . λ

(2)
t,2,H2

...
... . . .

...
λ

(2)
t,H1,1 λ

(2)
t,H1,2 . . . λ

(2)
t,H1,H2

⎞
⎟⎟⎟⎟⎠ .

Here the collection of matrices {λ(1)
i }i=1,...,N , {�(2)

t }t=1,...,T and {λ(3)
k }k=1,...,K are tensor

train cores.H1 andH2 are tensor train ranks and they control themodel complexity.When
H1 andH2 are small relative toN, T andK, this is a parsimonious representation of the rate
tensor {λ∗

i,t,k}i=1,...,N,t=1,...,T,k=1,...,K . Initially, the tensor has N · T · K parameters; whereas
the number reduces to N · H1 + T · H1 · H2 + K · H2 after using the tensor decomposi-
tion representation. In this context, instead of relying on interaction terms common in
Poisson regression to understand interactions among covariates, which potentially lead
to a prohibitively large number of parameters, we employ the hierarchical decomposition
technique to achieve the same goal. In otherwords, the tensor train decomposition could be
interpreted as a way to explore possible complex interactions among the three dimensions
using fewer factors. We will see more explicitly the interpretations in Section 5.3.

3. Prior specification and posterior inference

Due to the complex nature of themodel space, we adopt a Bayesian approach tomake infer-
ences. Bayesianmethods also provide the necessary uncertainty quantification.We impose
gamma priors on {λ(1)

i }i=1,...,N , {�(2)
t }t=1,...,T and {λ(3)

k }k=1,...,K to exploit the conjugate
property of the Poisson parameters; that is

λ
(1)
i,h1 ∼ Ga(αa,αb), i = 1, . . . ,N, h1 = 1, . . . ,H1,

λ
(2)
t,h1,h2 ∼ Ga(γa, γb), t = 1, . . . ,T, h1 = 1, . . . ,H1, h2 = 1, . . . ,H2,

λ
(3)
k,h2 ∼ Ga(εa, εb), k = 1, . . . ,K, h2 = 1, . . . ,H2.

Posterior inference on these parameters can be obtained by using the Gibbs sampling
algorithm conditional on the most recent values of other parameters. As for the Poisson
regression coefficients β , we follow the literature and assume zero-mean normal priors
such that

βp ∼ N (0, σ 2), p = 1, . . . ,P.

where βp denotes the p-th element of the vector β . This completes the prior specifica-
tion for the BPRTTD model. Since normal priors on β are not conjugate, we sample β

using an adaptive Metropolis-Hastings step that learns the posterior correlation between
parameters [33]. We outline the MCMC algorithm below.

3.1. Adaptivemetropolis within Gibbs sampler

We employ a Gibbs sampler for λi,h1 , λt,h1,h2 and λk,h2 given the Poisson regression coeffi-
cients β . The Gibbs sampling algorithm augments the state space with the variable Yh1,h2

i,t,k
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such that

Yh1,h2
i,t,k ∼ Pois

(
ui,t,k exp

(
xi,t,k · β

)
λ

(1)
i,h1λ

(2)
t,h1,h2λ

(3)
k,h2

)
. (2)

Utilizing the closure under addition property of Poisson random variables, (2) implies that

Yi,t,k =
H1∑

h1=1

H2∑
h2=1

Yh1,h2
i,t,k .

To drawYh1,h2
i,t,k conditional onYi,t,k andλ

(1)
i,h1 , λ

(2)
t,h1,h2 , λ

(3)
k,h2 , it suffices to note the relationship

between the Poisson random variable and the Multinomial random variable, i.e.

(
Y1,1
i,t,k,Y

1,2
i,t,k, . . . ,Y

H1,H2
i,t,k

)
∼ Multi

(
Yi,t,k,

(
π1,1
i,t,k,π

1,2
i,t,k, . . . ,π

H1,H2
i,t,k

))

with πh1,h2
i,t,k = λ

(1)
i,h1λ

(2)
t,h1,h2λ

(3)
k,h2/

∑H1
h1=1

∑H2
h2=1 λ

(1)
i,h1λ

(2)
t,h1,h2λ

(3)
k,h2 . Other useful latent quanti-

ties for the Gibbs sampler are

Yh1,·
i,·,· =

T∑
t=1

K∑
k=1

H2∑
h2=1

Yh1,h2
i,t,k

∼ Pois

⎛
⎝λ

(1)
i,h1ui,t,k exp

(
xi,t,k · β

) T∑
t=1

K∑
k=1

H2∑
h2=1

λ
(2)
t,h1,h2λ

(3)
k,h2

⎞
⎠ ,

Yh1,h2·,t,· =
N∑
i=1

K∑
k=1

Yh1,h2
i,t,k

∼ Pois

(
λ

(2)
t,h1,h2ui,t,k exp

(
xi,t,k · β

) N∑
i=1

K∑
k=1

λ
(1)
i,h1λ

(3)
k,h2

)
,

Y ·,h2
·,·,k =

N∑
i=1

T∑
t=1

H1∑
h1=1

Yh1,h2
i,t,k

∼ Pois

⎛
⎝λ

(3)
k,h2ui,t,k exp

(
xi,t,k · β

) N∑
i=1

T∑
t=1

H1∑
h1=1

λ
(1)
i,h1λ

(2)
t,h1,h2

⎞
⎠ .

With these three auxiliary variables, it is easy to derive the full conditional distributions.
To update λi,h1 , we draw samples from

λi,h1 | · ∼ Ga

⎛
⎝αa + Yh1,·

i,·,· ,αb + ui,t,k exp
(
xi,t,k · β

) T∑
t=1

K∑
k=1

H2∑
h2=1

λ
(2)
t,h1,h2λ

(3)
k,h2

⎞
⎠ .
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Similarly for λt,h1,h2 and λk,h2 , the full conditional distributions are

λt,h1,h2 | · ∼ Ga

(
γa + Yh1,h2·,t,· , γb + ui,t,k exp

(
xi,t,k · β

) N∑
i=1

K∑
k=1

λ
(1)
i,h1λ

(3)
k,h2

)

λk,h2 | · ∼ Ga

⎛
⎝εa + Y ·,h2

·,·,k , εb + ui,t,k exp
(
xi,t,k · β

) N∑
i=1

T∑
t=1

H1∑
h1=1

λ
(1)
i,h1λ

(2)
t,h1,h2

⎞
⎠ .

After updating λi,h1 , λt,h1,h2 and λk,h2 at each iteration, β is sampled using an adaptive
Metropolis-Hastings step [33] with n-step proposal distribution

Qn (β , ·) = (1 − p)N (
β , (2.38)2	n/d

) + pN (
β , (0.1)2	/d

)
,

where p is a small constant between 0 and 1, 	n is an empirical estimate of the covariance
matrix of the target posterior distribution based on the run so far and d is the dimension
of β . 	 is a fixed covariance matrix and we take it to be the GLM estimate of the Poisson
regression covariance matrix for efficiency.

4. Simulation studies

We have carried out two simulation studies to validate the BPRTTD model and its asso-
ciated posterior sampling algorithm. The first study involves the creation of artificial
parameters, which are then utilized to generate Poisson observations. We set N = 20,
T = 20, K = 20, and the rank of tensor train decomposition H1 = H2 = 5. We incor-
porate in the model one intercept and P = 5 covariates, whose regression coefficients β

are sampled from a centered normal distribution with a variance of 0.1. λ(1)
i,h1 is generated

from a gamma distribution with parameters shape equal to 1 and rate equal to 2.8. Sim-
ilarly, λ(2)

t,h1,h2 and λ
(3)
k,h2 are simulated from the same gamma distribution. After fixing the

parameter values, we generate covariates xi,t,k from a standard normal distribution and the
offset ui,t,k from a gamma distribution with shape and rate set to 5 and 1 respectively. We
repeat this simulation process 100 times, generating observed data Yi,t,k for each repeti-
tion. Finally, we fit the BPRTTD model to the simulated data. At this stage, we assume
that the true latent dimension H1 and H2 are known, and set the parameters of the prior
distribution as follows: αa = 1,αb = 1,βa = 1,βb = 2, εa = 1, εb = 1. The prior variance
of β is 0.1. The probability of sampling from the rescaled empirical normal distribution
in the proposal of the adaptive Metropolis-Hastings algorithm to update regression coeffi-
cients is p = 0.95. We run the Markov chain Monte Carlo (MCMC) simulation for 10,000
iterations, discarding the first 3000 iterations as burn-in. Partial comparison between true
β and the estimated ones is shown in Table 1. The method is able to correctly estimate
the true regression parameters β for both the intercept and the covariates. Note that the
estimates associatedwith simulated covariates, xi,t,k, have smaller standard deviations (esti-
mated over 100 Monte Carlo repetitions) than the standard deviations of the intercepts.
This is due to the identifiability issue associated with the intercept and λ

(1)
i,h1 , λ

(2)
t,h1,h2 , λ

(3)
k,h2

inherent to the BPRTTD model as these parameters multiply and contribute to the Pois-
son rate. The careful choice of prior parameters helps overcome the identifiability problem
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Table 1. Comparison between true β and the estimated β̂1 from the BPRTTD model and β̂2 from the
BPRCPD model in terms of posterior mean. The first column shows the estimated intercpet and the
remaining columns show the estimated coefficient associated with covariates. Averages and standard
deviations (in parentheses) of the posterior means over 100 repetitions are reported.

β −0.0387 0.1747 0.1103 0.1137 0.2840 −0.6080

β̂1 0.0078 0.1753 0.1100 0.1133 0.2841 −0.6074
(0.0342) (0.0049) (0.0038) (0.0042) (0.0044) (0.0048)

β̂2 0.1079 0.1748 0.1098 0.1132 0.2839 −0.6073
(0.0517) (0.0057) (0.0047) (0.0044) (0.0049) (0.0055)

and facilitates our goal to interpret factors λ
(1)
i,h1 , λ

(2)
t,h1,h2 , λ

(3)
k,h2 . The remaining results are

reported in the Supplementary Material.
In addition, we also compare our method with another Bayesian Poisson Regression

CP decomposition (BPRCPD) model where λ∗
i,t,k is assumed to admit a CP decomposi-

tion with H = 6. Gamma priors with the same rate and shape parameters are imposed
and 10,000 MCMC iterations are run as for estimating the proposed BPRTTD model.
Comparisons are displayed in Table 1. We notice that both methods are able to recover
the true regression coefficients; however, the estimated BPRTTD coefficients have slightly
smaller standard deviations, indicating that correct model specification does help reduce
the estimation uncertainty in this simulation setup.

It is worth noting, however, that the dimension of the simulated data in this study is
significantly smaller than what is typically encountered in real-world applications. This
choice is deliberate, allowing us to perform multiple simulation repetitions. An additional
constraint of this study is that the true parameters, represented as β , are drawn from
an arbitrary normal distribution. Moreover, the parameters λ

(1)
i , i = 1, . . . ,N,�(2)

t , t =
1, . . . ,T,λ(3)

k , k = 1, . . . ,K are simulated from a gamma distribution with artificial shape
and rate values. This approachmay not accuratelymirror a typical real-world data scenario.

To address these limitations, we designed a second simulation study. This study derives
true parameters from real data, based on the BPRTTD model specification. More specifi-
cally, we use the real data and apply the proposed BPRTTDmethod to obtain estimates of
the parameters β , λ(1)

i,h1 , λ
(2)
t,h1,h2 , λ

(3)
k,h2 . Once the estimates have been acquired, we treat them

as true parameters and simulate Poisson observations as per the (1) specification. In this
step, offsets ui,t,k are generated from a gamma distribution with shape parameter equal to
106 and rate of 1.

We then apply ourmethodology to the simulated data, aiming to recover the true param-
eters within this high-dimensional and more realistic context. A summary of the absolute
percentage error (APE) between the true parameters and their posterior mean estimates
is presented in Table 2. The results indicate that, using our method, at least 75% of the
parameters β , λ(1)

i,h1 , λ
(2)
t,h1,h2 , and λ

(3)
k,h2 in the BPRTTDmodel are recovered with less than a

40% deviation from their true values.

5. Causes of death in Italy from 2015 to 2020

We apply the BPRTTD model to Italian mortality data in an effort to comprehend the
evolving mortality patterns of COVID-19 and other causes of death, both prior to and
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Table 2. Summary statistics of the APE between true parameters and the estimated posterior means in
the second simulation study.

Min. 1st Qu. Median Mean 3rd Qu. Max.

|β̂ − β|/|β| 0.0005 0.0367 0.0978 0.2316 0.2667 4.4938

|λ̂(1)
i,h1

− λ
(1)
i,h1

|/|λ(1)
i,h1

| 0.0000 0.0095 0.0228 0.0331 0.0448 0.6248

|λ̂(2)
t,h1,h2

− λ
(2)
t,h1,h2

|/|λ(2)
t,h1,h2

| 0.0000 0.0083 0.0196 0.0280 0.0371 0.3162

|λ̂(3)
k,h2

− λ
(3)
k,h2

|/|λ(3)
k,h2

| 0.0005 0.0282 0.0671 0.1466 0.1372 2.1705

during the pandemic. These data include provisional monthly death counts derived from
the analysis of death certificates that doctors compiled for all Italian deaths between Jan-
uary 2015 andDecember 2020. These counts correspond toK = 18 distinct causes of death
and span T = 72 monthly death counts. Furthermore, the death counts are grouped into
N = 420 strata, defined by 10 age groups, two sexes, and 21 Italian regions. Consequently,
we observe Yi,t,k for i = 1, . . . ,N, t = 1, . . . ,T, k = 1, . . . ,K, with a total of 544,320 obser-
vations arranged in aN × T × K multiway array. The 544,320 observations include a total
of 288,591 non-zero counts, and these non-zero counts range from 1 to 1140 with a mean
13.6192 and a standard deviation 30.8174.

Along with death counts Yi,t,k, we incorporate covariates xi,t,k. A variable of primary
interest in our analysis is the Italian Stringency Index (ISI), proposed and developed
similarly to the Oxford Stringency Index (OSI) by [7,18]. This variable quantifies the
non-pharmaceutical interventions employed by Italian authorities to combat the COVID-
19 pandemic, providing insight at both national and regional levels. Regional stringency
indices are particularly relevant given that our mortality counts are region-based. We
explore potential interactions between the ISI and various causes of death, in light of liter-
ature suggesting the pandemicmay have distinct impacts on different mortality causes.We
also consider two other groups of covariates: interactions between age groups and causes
of death, and interactions between age groups and sex. Age and sex are recognized risk fac-
tors for numerous causes of death, with distinct mortality patterns often apparent between
males and females across various age brackets. These interaction terms contribute to a total
of 208-dimensional covariates, xi,t,k, in the model. The offset, ui,t,k includes the number of
days in each month, the monthly aggregated COVID-19 cases, and the population for all
other causes of death. For external causes such as trauma and poisoning, we consider an
additional offset reflecting mobility levels. We leverage the Google COVID-19 Commu-
nity Mobility Reports as an indicator of this. By integrating the mobility offset into the
Poisson rate, we can model changes in the mortality rate of external causes of death per
fixed mobility unit.

The remaining Poisson rate λ∗
i,t,k, not accounted for by the regression component, is

assumed to admit tensor train decomposition with rank H1 = 6 and H2 = 6. The intu-
ition behind applying the tensor train decomposition to the data is that we assume there
is a lower-dimensional approximation in the 420 demographic strata in terms ofH1 latent
classes. On top of that, each latent class is further decomposed intoH2 latent classes charac-
terized by time-varying mortality patterns of 18 causes of death over 72 months. This hier-
archical structure assumption naturally coincides with tensor train decomposition. These
values were determined after testing various combinations ofH1 andH2 over grids defined
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Figure 1. Death counts of selected demographic groups and causes of death from January 2015 to
December 2020. The black line represents the observed trajectory Yi,t,k , t = 1, . . . , T for fixed i and k;
red andblue lines represent BPRTTDfitted values andGLMfitted values respectively. Shaded areas corre-
spond to 95%credible intervals for BPRTTDpredictions and95%confidence interval for GLMpredictions.
(a) Lombardy, male, 80–84, Tumors. (b) Lombardy, male, 80–84, COVID-19 and (c) Lazio, female, 0–49,
External causes of trauma and poisoning.

by H1 = 5, 6, 7, 8 and H2 = 5, 6, 7, 8. The chosen values strike a balance between reason-
able model fitting and model complexity. The Gamma priors on λ

(1)
i,h1 , λ

(2)
t,h1,h2 , λ

(3)
k,h2 have

parameters such that αb = 20,αa = √
1/(H1 ∗ H2) ∗ αb, γb = 20, γa = √

1/(H1 ∗ H2) ∗
γb, εa = 200, εb = 200. For the Poisson regression coefficients β , we impose centered nor-
mal priors with variance equal to 2. TheMCMC iterations are 40,000. Finally, we add some
remarks on the computational efficiency of the algorithm. Theoretically, the algorithm
complexity is linear in H1 ∗ H2. For instance, when H1 = 6,H2 = 6, it takes roughly 15
hours to draw 40,000 MCMC samples. The simulation time is reduced to 12 hours for
H1 = 5,H2 = 6 and H1 = 6,H2 = 5. The reported computational times are observed on
macOS Monterey with a 2GHz Quad-Core Intel Core i5 processor and 16 GB 3733MHz
LPDDR4X memory.

5.1. Improvement of BPRTTDmodel over Poisson regression

First, we highlight the contribution of the additional tensor decomposition component
to fitting the Poisson rate. Figure 1 depicts how our method refines the GLM estimates,
allowing them to more accurately recover the observed fluctuations in death counts Yi,t,k.
In selected trajectories, the tensor decomposition component corrects GLM estimates to
more closely align with observed trajectories. As an example, the GLM-predicted death
counts for males aged 80–84 who resided in Lombardy and died from tumors are consis-
tently lower than observed counts. This is not surprising, as the GLM estimates fit using
the average of all observations, while Lombardy, the most populated region in Italy, gener-
ally records higher death counts. Our method effectively bridges the gap between data and
GLM estimates by amplifying the Poisson rates, as demonstrated in Figure 1(a).

When GLM overpredicts, as depicted in Figure 1(b), λ∗
i,t,k serves to reduce the Pois-

son rate. The tensor decomposition assumption allows for such adjustments to be made
in a parsimonious manner. Note that a saturated model would require a total of 544,320
parameters. In contrast, our approach introduces only N × H1 + T × H1 × H2 + K ×
H2 = 5220 additional parameters, aside from the 208 coefficients, resulting in a signifi-
cant improvement in model fitting. This advantage is evident when comparing the log-
likelihood of a simple Poisson regression versus our BPRTTD model, which respectively
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stand at −862910.4 and −731919.9; or when comparing the deviance goodness-of-fit,
which are 106666274.0 and 463324.2 for a simple Poisson regression and the proposed
BPRTTD model, respectively. Even though our approach offers further approximation
to observations, it remains robust to outliers or abnormal records. The model specifica-
tion exploits and leverages information from other observations by introducing commonly
shared latent tensor cores. Figure 1(c) illustrates such a scenario, where female mortality
counts in the 0–49 age group in Lazio in August 2016 demonstrate a sudden spike, deviat-
ing from the normal pattern. The BPRTTD line, shown in red, is not sensitive to such an
outlier.

5.2. Interpretation of Poisson regression component

In this section, we aim to answer the question of how other causes of death are affected
by government intervention policies. Based on whether the 95% credible intervals of each
coefficient are above 0, below 0, or contain 0, we infer three types of responses: positive,
negative, and no effects. Mortality counts are positively associated with ISI in the follow-
ing death categories: diseases of the blood and hematopoietic organs and disorders of the
immune system; endocrine, nutritional, and metabolic diseases; psychic and behavioral
disorders; diseases of the nervous system and sense organs; diseases of the respiratory
system; diseases of the musculoskeletal system and connective tissue; diseases of the geni-
tourinary system, symptoms, signs, abnormal results, and ill-defined causes; and external
causes of trauma and poisoning. The positive relationship between ISI and psychic disor-
ders, affecting both psychiatric patients and the general population, is well documented
in the literature [20,34]. While many studies report increasing levels of anxiety and acute
stress disorders, our findings provide new evidence that these factors actually translate to
elevated mortality rates from psychic and behavioral disorders. Another positive relation-
ship of interest is between ISI and mortality due to respiratory system diseases. Despite
studies suggesting a decline in respiratory disease incidences due to public precautionary
measures [2,23,24], we find that the mortality rate from respiratory diseases increases dur-
ing the COVID-19 lockdown. Factors like disruption to routine care and misclassification
of cause of death in the early pandemic can explain this increase. For mortality due to
external causes of trauma and poisoning, we discover an upward trend as more intense
lockdown measures are enforced, contradicting expectations. After adjusting for the neg-
ative effect of lockdown on population mobility, we attribute this to reduced or delayed
access to healthcare caused by government intervention policies.

Negative correlations appear in infectious and parasitic diseases; tumors; diseases of
the circulatory system; diseases of the digestive system; complications of pregnancy, child-
birth, and the puerperium; morbid conditions that originate in the perinatal period; and
congenital malformations and chromosomal anomalies. It has been observed that infec-
tious and parasitic diseases caused less mortality when government interventions were
stricter [9]. One explanation for the decrease in tumormortality rate is the harvesting effect
ormortality displacement [25,37], which refers to the phenomenonwhere individuals who
are already vulnerable, in this case, tumor patients, experience accelerated deaths during
the COVID-19 lockdown intervention, leading to a temporary decline in tumor mortality
rates. However, this decline is expected to be followed by a period of increased mortality
as those who would have died during the intervention succumb in the subsequent period.
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Only one category, diseases of the skin and subcutaneous tissue, exhibits no statistically
significant relationship with ISI. We also observe the effect of sex and age on the hazard
rates. In general, an older population is associated with higher mortality in almost all types
of death causes, and men are more likely to die than women in the same age group. The
exception is with tumors, wheremen from certain younger age groups present highermor-
tality rates compared to women from older age groups. It is also counterintuitive to find
a positive relation between age and the mortality rate due to external causes of trauma
and poisoning. Although the absolute death counts decrease with age, the mortality rates
per population unit increase, suggesting that these external causes become more threaten-
ing as people age. We present predicted mortality rates for selected causes of death in the
Supplementary Material.

5.3. Interpretation of latent tensor cores

Three blocks of latent tensor cores are introduced in the BPRTTD model, and they are
arranged in a dependent structure; that is, each latent class λ

(1)
i,h1 is characterized by dif-

ferent λ
(2)
t,h1,h2 , and furthermore, h2-specific λ

(3)
k,h2 . This structure necessitates a systematic

approach to the interpretation of latent parameters.
The first block of tensor cores λ

(1)
i,h1 allocates demographic groups, defined by Italian

regions, sex, and age groups, into H1 latent classes. The posterior mean estimates of λ
(1)
i,h1

are displayed in Table 3, with values above the mean αa/αb of the Gamma prior distribu-
tion highlighted in red. As these estimates reveal differential local effects of higher-order
interactions between covariates on mortality rates unaccounted for by Poisson regression,
they provide key insights into the unique demographic mortality patterns.

The latent classes h1 = 1 and h1 = 4 predominantly represent female and male mor-
tality patterns, respectively, albeit with notable geographical dependencies. For instance,
the majority of female age groups, except older females (age group 85+) from south-
ern Italy (Molise, Campania, Apulia, Basilicata, Calabria, Sicily), exhibit increased weights
in latent class h1 = 1, as demonstrated in Table 3(a). These same older southern Italian
women share similar mortality patterns with nearly all male groups, excluding those in
northern Italy (Piemonte, Valle d’Aosta, Lombardy, Veneto, Friuli-Venezia Giulia, Emilia-
Romagna), as illustrated in Table 3(d). Interestingly, latent class h1 = 6 indicates a shared
mortality pattern between old males and young females.

To further unpack these insights, a newmatrix of dimension 21 × (2 × 10 × H1) is con-
structed by rearranging the posteriormean estimates of λ(1)

i,h1 , i = 1, . . . ,N, h1 = 1, . . . ,H1.
Here, 21 is the number of Italian regions, while 2 and 10 represent sex and age groups. We
then classify Italian regions based on these features using the partitioning aroundmedoids
(PAM) algorithm. The optimal number of clusters, according to the elbow method, is 4.

The clustering algorithm corroborates previous observations. As displayed in
Figure 2(a), northern Italy, along with Tuscany, Umbria, and Marche, is classified differ-
ently from southern Italy, plus Lazio and excluding Campania, Calabria, and Sicily. These
two clusters have similar weights in latent class h1 = 6, but exhibit differences in classes
h1 = 1 and h1 = 4, notably for female populations in northern Italy and older females in
southern Italy. Southern Italy is further divided into two groups that show homogeneous
behavior in latent classes h1 = 4 and h1 = 6, but substantial differences in latent class h2,
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Table 3. Posterior mean estimates of λ(1)
i,h1

, i = 1, . . . ,N, h1 = 1, . . . ,H1, from the BPRTTD model. Red-colored numbers indicate that the estimates are higher than
the prior mean.

Male 00–49 50–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95+ Female 00–49 50–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95+
(a) λ̂(1)

i,1

Piedmont 0.2176 0.1779 0.2456 0.1583 0.1277 0.1419 0.1351 0.1061 0.0799 0.0431 0.1312 0.2436 0.2442 0.4634 0.4536 0.4853 0.4126 0.3386 0.2555 0.2102
Aosta Valley 0.0926 0.1480 0.1575 0.2142 0.1906 0.1744 0.3431 0.3038 0.1781 0.1307 0.1568 0.1502 0.1883 0.1688 0.2560 0.3198 0.4968 0.4399 0.5008 0.4501
Lombardy 0.1580 0.1784 0.0874 0.0688 0.0531 0.0427 0.0786 0.0836 0.0991 0.0644 0.0989 0.1233 0.2349 0.3042 0.3308 0.3454 0.3565 0.3446 0.3095 0.3090
Veneto 0.2859 0.2770 0.3613 0.2588 0.3013 0.2781 0.2858 0.2892 0.2818 0.2949 0.1447 0.2803 0.3251 0.4609 0.4846 0.5100 0.5346 0.5167 0.4924 0.4948
Friuli-
Venezia
Giulia

0.1308 0.2867 0.3383 0.2717 0.2647 0.1368 0.1372 0.1331 0.1502 0.1148 0.0800 0.1073 0.2918 0.3231 0.4759 0.3324 0.2955 0.2565 0.1991 0.1577

Liguria 0.1206 0.1908 0.1213 0.1934 0.0668 0.0908 0.0809 0.0654 0.0774 0.0998 0.0862 0.1138 0.1622 0.2711 0.3286 0.4116 0.4099 0.3926 0.2597 0.2784
Emilia-
Romagna

0.1650 0.2920 0.2089 0.2036 0.1461 0.1841 0.1742 0.1811 0.1909 0.1767 0.1261 0.2044 0.3586 0.3934 0.4405 0.4047 0.4522 0.4153 0.3806 0.3645

Tuscany 0.1949 0.2870 0.2403 0.1431 0.1527 0.1582 0.1370 0.1098 0.0553 0.0454 0.0762 0.1685 0.3080 0.3947 0.4376 0.4963 0.4255 0.3874 0.3217 0.2066
Umbria 0.1951 0.1352 0.0933 0.1233 0.1003 0.1466 0.1237 0.1010 0.1306 0.1302 0.1203 0.1426 0.2229 0.1926 0.2821 0.3066 0.3960 0.3807 0.3847 0.3464
Marche 0.1834 0.2070 0.1385 0.1205 0.1300 0.1879 0.1814 0.1770 0.1806 0.1553 0.0878 0.1647 0.2547 0.2451 0.3994 0.4099 0.4478 0.5024 0.3929 0.3967
Lazio 0.1070 0.1517 0.0587 0.0650 0.0632 0.0499 0.0421 0.0345 0.0110 0.0173 0.0789 0.1201 0.2639 0.2836 0.3318 0.3118 0.2642 0.2366 0.1886 0.1320
Abruzzo 0.1707 0.1742 0.1439 0.1405 0.1242 0.0753 0.1298 0.1322 0.1270 0.1139 0.1865 0.1763 0.3162 0.3039 0.3419 0.3628 0.3815 0.3426 0.3122 0.2468
Molise 0.1028 0.1572 0.1334 0.1739 0.1648 0.0944 0.0473 0.0381 0.0579 0.0543 0.1614 0.1546 0.1144 0.2131 0.1831 0.1916 0.1596 0.0704 0.0751 0.0504
Campania 0.0268 0.0282 0.0348 0.0139 0.0123 0.0059 0.0045 0.0041 0.0053 0.0117 0.0143 0.0324 0.1198 0.1600 0.1957 0.1017 0.0957 0.0704 0.0522 0.0347
Apulia 0.2665 0.1652 0.0755 0.1054 0.0980 0.0569 0.0620 0.0539 0.0196 0.0302 0.1233 0.1598 0.3070 0.3111 0.4298 0.3769 0.2997 0.2679 0.2077 0.1095
Basilicata 0.1661 0.1156 0.1079 0.1255 0.0860 0.0578 0.0847 0.0388 0.0381 0.0724 0.1428 0.1165 0.1801 0.1799 0.2696 0.2357 0.2286 0.1318 0.1218 0.1337
Calabria 0.1114 0.1237 0.0686 0.0648 0.0343 0.0416 0.0167 0.0099 0.0133 0.0225 0.0801 0.1475 0.1813 0.2559 0.2840 0.1434 0.0990 0.0750 0.0456 0.0290
Sicily 0.1935 0.0603 0.0631 0.0254 0.0218 0.0104 0.0081 0.0060 0.0067 0.0157 0.0993 0.0879 0.2348 0.3195 0.3650 0.2447 0.1733 0.1254 0.0737 0.0494
Sardinia 0.2822 0.4700 0.2780 0.1726 0.1961 0.2469 0.2395 0.2195 0.2347 0.1007 0.1112 0.2799 0.3253 0.4373 0.5476 0.5361 0.5265 0.4876 0.4780 0.3805
Bolzano 0.0690 0.1217 0.1862 0.2504 0.1110 0.1285 0.1578 0.2115 0.2872 0.1487 0.1268 0.1486 0.2377 0.2467 0.2636 0.4329 0.4002 0.4235 0.4572 0.3867
Trento 0.0894 0.1515 0.1894 0.1618 0.1207 0.1091 0.0845 0.0982 0.0883 0.0906 0.1109 0.1300 0.1230 0.2024 0.2427 0.2028 0.2475 0.2549 0.2873 0.2906

(b) λ̂(1)
i,2

Piedmont 0.0089 0.0109 0.0238 0.0316 0.0294 0.0362 0.0907 0.1551 0.2000 0.2607 0.0255 0.0169 0.0426 0.0509 0.1417 0.1882 0.2719 0.3593 0.3935 0.3755
Aosta Valley 0.1243 0.1338 0.1148 0.1229 0.1238 0.0998 0.0977 0.1198 0.1042 0.1258 0.1501 0.0978 0.1301 0.1147 0.1123 0.1395 0.1525 0.0993 0.1654 0.1614
Lombardy 0.0078 0.0167 0.0171 0.0164 0.0122 0.0140 0.0185 0.0361 0.0572 0.0501 0.0112 0.0090 0.0224 0.0140 0.0398 0.0739 0.1339 0.1517 0.1470 0.1315
Veneto 0.0406 0.0634 0.0660 0.1058 0.0936 0.0813 0.0765 0.0459 0.0333 0.0532 0.0290 0.0271 0.0471 0.0581 0.1283 0.1450 0.1768 0.1756 0.1343 0.1047
Friuli-
Venezia
Giulia

0.1997 0.1918 0.2055 0.1454 0.1678 0.1003 0.0642 0.0251 0.0194 0.0393 0.0978 0.0550 0.1115 0.1115 0.0587 0.1255 0.0946 0.0584 0.0438 0.0336

Liguria 1.0496 0.8761 0.6517 0.5022 0.4272 0.2426 0.1288 0.0758 0.0209 0.0396 0.5202 0.2459 0.2946 0.2830 0.2634 0.2517 0.2261 0.1600 0.1080 0.0862
Emilia-
Romagna

0.1693 0.0619 0.0431 0.0487 0.0268 0.0211 0.0251 0.0171 0.0124 0.0171 0.0742 0.0463 0.0395 0.0904 0.0885 0.1099 0.1442 0.1240 0.0758 0.0608

Tuscany 0.0657 0.0921 0.0837 0.0990 0.0426 0.0944 0.0842 0.1455 0.2342 0.2796 0.0446 0.0614 0.0412 0.0917 0.1277 0.1558 0.2549 0.3401 0.3873 0.4166
Umbria 0.0626 0.0476 0.1582 0.1088 0.0492 0.0427 0.0551 0.0917 0.1077 0.1289 0.0799 0.0616 0.1004 0.0723 0.1615 0.0901 0.1418 0.1903 0.2205 0.2788

(continued).



14
W
.ZH

A
N
G
ET

A
L.

Table 3. Continued.

Male 00–49 50–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95+ Female 00–49 50–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95+
Marche 0.0155 0.0318 0.0443 0.0314 0.0271 0.0210 0.0143 0.0108 0.0216 0.0265 0.0293 0.0292 0.0520 0.0442 0.0702 0.0394 0.0569 0.0220 0.0184 0.0333
Lazio 0.0871 0.1031 0.0560 0.0563 0.0478 0.0687 0.0280 0.0157 0.0125 0.0113 0.0507 0.0599 0.1159 0.0992 0.1323 0.1450 0.1171 0.0737 0.0561 0.0348
Abruzzo 0.0455 0.0435 0.0706 0.0814 0.0458 0.0269 0.0237 0.0259 0.0240 0.0353 0.0562 0.0638 0.1280 0.0856 0.1385 0.0716 0.0794 0.0630 0.0587 0.0773
Molise 0.1017 0.2080 0.2883 0.1259 0.1463 0.1526 0.1089 0.1199 0.0687 0.1397 0.1706 0.0919 0.1556 0.2198 0.2260 0.2595 0.2090 0.1564 0.1407 0.1911
Campania 1.1864 1.1549 0.9085 0.7452 0.5601 0.4839 0.3232 0.1704 0.0853 0.0300 0.4727 0.5355 0.6787 0.7316 0.7963 0.7399 0.5390 0.3115 0.2015 0.1338
Apulia 0.0184 0.1335 0.1052 0.1585 0.1693 0.1264 0.1167 0.1204 0.1580 0.1115 0.0508 0.0912 0.1361 0.2114 0.3139 0.3634 0.2830 0.2561 0.2530 0.2505
Basilicata 0.2555 0.2788 0.2481 0.1980 0.1216 0.1764 0.0822 0.0323 0.0930 0.0646 0.1770 0.1857 0.1608 0.2017 0.3689 0.3366 0.2542 0.0844 0.1103 0.0872
Calabria 0.3779 0.5199 0.3678 0.3644 0.3479 0.3168 0.3199 0.2713 0.2379 0.1793 0.2462 0.2947 0.4519 0.4499 0.5928 0.6148 0.4710 0.4175 0.3748 0.3053
Sicily 0.2371 0.4084 0.4387 0.4151 0.4585 0.4146 0.4426 0.4081 0.4344 0.3837 0.2718 0.3370 0.3584 0.5116 0.6086 0.7775 0.7962 0.6960 0.6333 0.5496
Sardinia 0.0211 0.0490 0.0566 0.0578 0.0350 0.0558 0.0882 0.1028 0.1998 0.3013 0.0428 0.0424 0.0580 0.0768 0.0678 0.1196 0.2039 0.2144 0.2779 0.3851
Bolzano 0.0290 0.0393 0.0710 0.0737 0.0630 0.0503 0.0340 0.0255 0.0324 0.0775 0.0423 0.0525 0.0650 0.0695 0.0557 0.0462 0.0513 0.0315 0.0263 0.0437
Trento 0.0569 0.0601 0.0806 0.1032 0.0951 0.0911 0.1739 0.0824 0.1175 0.0693 0.0497 0.0605 0.0942 0.1456 0.1120 0.1656 0.1144 0.2025 0.1009 0.1041

(c) λ̂(1)
i,3

Piedmont 0.0531 0.1042 0.1188 0.0778 0.1016 0.1337 0.1417 0.1140 0.0777 0.0238 0.0812 0.0251 0.0347 0.0462 0.0550 0.0696 0.1190 0.2297 0.2887 0.3435
Aosta Valley 0.1128 0.0972 0.1257 0.1640 0.1139 0.1328 0.1712 0.1546 0.0859 0.1105 0.1363 0.1147 0.1237 0.0812 0.1463 0.1624 0.1544 0.2364 0.2585 0.3347
Lombardy 0.0681 0.0398 0.0284 0.0301 0.0445 0.0485 0.0635 0.0297 0.0060 0.0047 0.0415 0.0254 0.0152 0.0138 0.0106 0.0108 0.0232 0.0583 0.0900 0.1469
Veneto 0.0396 0.0567 0.0541 0.0567 0.0655 0.0825 0.0957 0.0829 0.0579 0.0299 0.0566 0.0205 0.0299 0.0139 0.0273 0.0334 0.0607 0.1739 0.2895 0.3717
Friuli-
Venezia
Giulia

0.1152 0.0636 0.0894 0.0976 0.0876 0.1632 0.1575 0.1511 0.1357 0.1231 0.0669 0.0769 0.0532 0.0415 0.0624 0.1062 0.1882 0.2467 0.4197 0.7280

Liguria 0.0624 0.1124 0.1465 0.1851 0.2059 0.2469 0.2561 0.2771 0.2340 0.0912 0.0712 0.1064 0.1370 0.1253 0.1587 0.1768 0.2315 0.2735 0.4091 0.4193
Emilia-
Romagna

0.1023 0.0483 0.0678 0.0700 0.0795 0.0778 0.0985 0.1103 0.0960 0.0831 0.0804 0.0462 0.0468 0.0355 0.0232 0.0408 0.0787 0.1927 0.3211 0.4643

Tuscany 0.1256 0.0381 0.0743 0.0731 0.0939 0.0744 0.0940 0.0887 0.0606 0.0268 0.0558 0.0369 0.0664 0.0303 0.0388 0.0488 0.0872 0.1194 0.1816 0.2499
Umbria 0.1102 0.1265 0.1883 0.1281 0.2568 0.1747 0.2003 0.1395 0.1092 0.0971 0.0914 0.0692 0.1674 0.1072 0.1403 0.1670 0.1606 0.1920 0.1570 0.1775
Marche 0.0874 0.0990 0.1594 0.0760 0.0957 0.1347 0.1042 0.1160 0.1549 0.0425 0.1118 0.0487 0.0971 0.0725 0.0854 0.0935 0.1235 0.1813 0.3082 0.3175
Lazio 0.4921 0.4960 0.4334 0.3473 0.2902 0.2382 0.2260 0.1625 0.1005 0.0376 0.2178 0.2111 0.1866 0.2277 0.1941 0.1626 0.2428 0.2755 0.2632 0.2586
Abruzzo 0.1046 0.1055 0.1220 0.1733 0.1127 0.0742 0.0894 0.0867 0.0395 0.0486 0.0865 0.0881 0.0869 0.0816 0.1050 0.0829 0.0598 0.1089 0.1552 0.1667
Molise 0.1567 0.1963 0.2348 0.2204 0.2147 0.1109 0.1596 0.1409 0.1099 0.1302 0.1698 0.1362 0.1537 0.1680 0.1706 0.0922 0.1472 0.2220 0.2698 0.1558
Campania 0.1231 0.1355 0.1308 0.1247 0.0994 0.0382 0.0102 0.0031 0.0029 0.0047 0.0455 0.0455 0.0444 0.0371 0.0215 0.0122 0.0104 0.0051 0.0062 0.0113
Apulia 0.2046 0.2630 0.2402 0.2365 0.2174 0.1728 0.1556 0.1084 0.0587 0.0455 0.2476 0.1397 0.1654 0.1018 0.1074 0.0750 0.1278 0.1031 0.1648 0.1586
Basilicata 0.2320 0.1932 0.2394 0.2325 0.2024 0.1625 0.1305 0.1923 0.0868 0.1132 0.1070 0.0909 0.2418 0.1201 0.1505 0.1552 0.1497 0.1917 0.2322 0.1563
Calabria 0.1013 0.0914 0.1414 0.0890 0.0626 0.0452 0.0181 0.0251 0.0177 0.0257 0.0938 0.0859 0.0886 0.0702 0.0493 0.0369 0.0354 0.0274 0.0295 0.0496
Sicily 0.3061 0.3217 0.2478 0.2359 0.2623 0.1673 0.0956 0.0617 0.0302 0.0290 0.1088 0.1310 0.1718 0.1878 0.1355 0.0472 0.0617 0.1031 0.1021 0.0645
Sardinia 0.1349 0.2406 0.3515 0.3878 0.2748 0.2502 0.2038 0.1726 0.0864 0.0622 0.1479 0.1231 0.0844 0.1332 0.1125 0.2329 0.1624 0.1975 0.2231 0.1278
Bolzano 0.0505 0.0388 0.0556 0.0258 0.0359 0.0390 0.0341 0.0335 0.0417 0.0435 0.0949 0.0550 0.0547 0.0458 0.0382 0.0325 0.0607 0.0552 0.1585 0.3102
Trento 0.0842 0.0727 0.1164 0.0799 0.1612 0.1404 0.2461 0.3021 0.2375 0.1949 0.0894 0.0852 0.0998 0.0873 0.1482 0.1280 0.2938 0.3026 0.5033 0.5873

(continued).
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Table 3. Continued.

Male 00–49 50–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95+ Female 00–49 50–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95+
(d) λ̂(1)

i,4

Piedmont 0.4170 0.4056 0.3023 0.2667 0.2324 0.1878 0.1423 0.1172 0.1091 0.1194 0.0281 0.0316 0.0705 0.0921 0.0543 0.0530 0.0482 0.0137 0.0155 0.0271
Aosta Valley 0.6247 0.4970 0.2679 0.3391 0.2693 0.1550 0.1538 0.0919 0.0781 0.1594 0.1438 0.1072 0.1294 0.1307 0.1547 0.1373 0.0888 0.0841 0.0404 0.0572
Lombardy 0.3005 0.2369 0.1946 0.1430 0.1119 0.0946 0.0782 0.0908 0.0925 0.1210 0.0093 0.0096 0.0167 0.0135 0.0188 0.0170 0.0138 0.0230 0.0320 0.0380
Veneto 0.3779 0.3154 0.2565 0.2413 0.1989 0.1676 0.1554 0.1563 0.1473 0.1284 0.0272 0.0282 0.0401 0.0384 0.0305 0.0563 0.0541 0.0552 0.0621 0.0606
Friuli-
Venezia
Giulia

0.3363 0.2896 0.2290 0.2001 0.1456 0.1935 0.1875 0.1672 0.1532 0.1192 0.0371 0.0452 0.0481 0.0671 0.0541 0.0697 0.1206 0.1563 0.1409 0.0632

Liguria 0.0295 0.0218 0.0822 0.0350 0.0625 0.0683 0.1146 0.1166 0.1389 0.1940 0.0139 0.0163 0.0256 0.0226 0.0429 0.0283 0.0482 0.0731 0.1040 0.1354
Emilia-
Romagna

0.3413 0.2671 0.2573 0.2121 0.1980 0.1764 0.1552 0.1258 0.1270 0.1325 0.0330 0.0244 0.0375 0.0278 0.0624 0.0804 0.0759 0.0697 0.0667 0.0759

Tuscany 0.3828 0.2896 0.2533 0.2063 0.2233 0.1735 0.1681 0.1316 0.1174 0.1200 0.0374 0.0211 0.0484 0.0394 0.0716 0.0551 0.0629 0.0482 0.0415 0.0541
Umbria 0.3032 0.3006 0.2437 0.3032 0.2221 0.2300 0.1952 0.1761 0.1413 0.1238 0.0447 0.0564 0.0540 0.0897 0.0854 0.1099 0.1061 0.1276 0.1172 0.1053
Marche 0.3640 0.3231 0.2304 0.2375 0.2453 0.1803 0.1776 0.2043 0.1782 0.2554 0.0935 0.0541 0.0482 0.0717 0.0858 0.1192 0.1533 0.1772 0.1898 0.2141
Lazio 0.3480 0.3504 0.3270 0.3170 0.2958 0.2596 0.2514 0.2625 0.2829 0.3087 0.0185 0.0251 0.0545 0.1032 0.1630 0.2073 0.2356 0.2777 0.3081 0.3374
Abruzzo 0.3990 0.4891 0.3895 0.3694 0.3728 0.3858 0.3536 0.2997 0.2916 0.3074 0.0574 0.0792 0.0750 0.1266 0.1923 0.2855 0.3513 0.3516 0.3150 0.3216
Molise 0.3765 0.4093 0.3011 0.2993 0.3100 0.3318 0.3286 0.3299 0.2861 0.2406 0.0662 0.0776 0.1340 0.1578 0.2457 0.3414 0.3582 0.3837 0.3117 0.3296
Campania 0.0091 0.0313 0.0703 0.1466 0.2400 0.2838 0.3282 0.3776 0.4059 0.3839 0.0031 0.0090 0.0418 0.0582 0.1781 0.3269 0.4321 0.5275 0.5391 0.5223
Apulia 0.3408 0.2829 0.2732 0.2332 0.2304 0.2515 0.2319 0.2300 0.2064 0.2396 0.0192 0.0186 0.0433 0.0995 0.0965 0.1667 0.2489 0.2566 0.2562 0.2699
Basilicata 0.2608 0.3732 0.3262 0.2737 0.3294 0.2734 0.3244 0.3015 0.3056 0.2674 0.0469 0.0606 0.1454 0.2119 0.1304 0.2395 0.3046 0.4339 0.3437 0.3200
Calabria 0.3351 0.3077 0.3617 0.3333 0.3379 0.3508 0.3014 0.2787 0.2696 0.2658 0.0252 0.0457 0.0546 0.1122 0.1352 0.2618 0.3584 0.3719 0.3598 0.3547
Sicily 0.2966 0.2965 0.2746 0.2706 0.2013 0.2549 0.2177 0.2152 0.1802 0.1857 0.0077 0.0191 0.0397 0.0619 0.1539 0.1770 0.1889 0.2182 0.1949 0.2115
Sardinia 0.5517 0.3420 0.2205 0.2291 0.2203 0.1611 0.1142 0.0725 0.0470 0.0536 0.0414 0.0330 0.0316 0.0606 0.0338 0.0298 0.0417 0.0262 0.0098 0.0079
Bolzano 0.5607 0.5217 0.4613 0.3766 0.3194 0.2194 0.2331 0.1573 0.1354 0.2213 0.1108 0.0836 0.0916 0.1001 0.1050 0.1433 0.1271 0.1471 0.1407 0.0808
Trento 0.5138 0.4323 0.2887 0.2406 0.1796 0.1744 0.0847 0.0892 0.0605 0.1012 0.1033 0.0453 0.0881 0.0510 0.0603 0.0778 0.0417 0.0355 0.0399 0.0184

(e) λ̂(1)
i,5

Piedmont 0.1311 0.2530 0.2568 0.3332 0.3715 0.3146 0.2959 0.2664 0.1741 0.1136 0.0972 0.1082 0.2215 0.1205 0.2086 0.2733 0.2495 0.2337 0.2347 0.1688
Aosta Valley 0.0960 0.1146 0.2494 0.1752 0.2103 0.3083 0.1597 0.1022 0.1653 0.1520 0.1459 0.1968 0.1468 0.1428 0.1520 0.1873 0.1397 0.2151 0.1335 0.1025
Lombardy 0.3268 0.5206 0.6397 0.7222 0.6937 0.6661 0.5534 0.4270 0.2946 0.1565 0.2078 0.2384 0.2701 0.3549 0.4463 0.5078 0.4943 0.4982 0.5259 0.4702
Veneto 0.0578 0.1078 0.0589 0.0654 0.0469 0.0729 0.0475 0.0406 0.0348 0.0269 0.0663 0.0417 0.0531 0.0332 0.0346 0.0382 0.0467 0.0607 0.0999 0.0819
Friuli-
Venezia
Giulia

0.0974 0.1098 0.1101 0.0946 0.0740 0.1188 0.0900 0.0661 0.0751 0.0802 0.0670 0.0934 0.1083 0.0513 0.0568 0.1203 0.0635 0.0980 0.1210 0.1140

Liguria 0.0538 0.0822 0.1784 0.1919 0.2615 0.2856 0.2218 0.2030 0.1383 0.1483 0.0714 0.0926 0.1036 0.1838 0.1781 0.2481 0.1973 0.1697 0.1807 0.1478
Emilia-
Romagna

0.1317 0.2215 0.2977 0.2845 0.3117 0.3026 0.2437 0.1901 0.1148 0.0631 0.0676 0.1023 0.1331 0.2060 0.1890 0.2514 0.1932 0.1886 0.1799 0.0879

Tuscany 0.0594 0.1895 0.1412 0.1893 0.1184 0.1094 0.1099 0.0880 0.0649 0.0504 0.1028 0.1020 0.0573 0.0725 0.0990 0.0931 0.0730 0.0423 0.0437 0.0359

(continued).
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Table 3. Continued.

Male 00–49 50–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95+ Female 00–49 50–59 60–64 65–69 70–74 75–79 80–84 85–89 90–94 95+
Umbria 0.1733 0.1968 0.1117 0.1326 0.0853 0.0750 0.0456 0.0615 0.0878 0.0910 0.1290 0.1348 0.0981 0.1611 0.0816 0.0912 0.0701 0.0538 0.0678 0.0777
Marche 0.0831 0.1949 0.1618 0.2600 0.2177 0.1914 0.2148 0.1479 0.0979 0.0805 0.0981 0.0860 0.1467 0.1131 0.0742 0.1240 0.1089 0.0905 0.0878 0.0645
Lazio 0.1919 0.1048 0.1430 0.0943 0.0566 0.0752 0.0627 0.0346 0.0391 0.0204 0.0780 0.0868 0.0734 0.0766 0.0687 0.0649 0.0611 0.0452 0.0439 0.0231
Abruzzo 0.1257 0.2084 0.2535 0.1578 0.1366 0.1256 0.0771 0.0528 0.0615 0.0535 0.1162 0.1827 0.1420 0.1164 0.1251 0.1064 0.0742 0.0814 0.0984 0.0465
Molise 0.1325 0.1414 0.1213 0.1464 0.1190 0.1126 0.0911 0.0711 0.0938 0.1116 0.2045 0.1482 0.1956 0.1230 0.1204 0.0944 0.0829 0.0866 0.0856 0.0532
Campania 0.0620 0.1233 0.0772 0.1022 0.0654 0.0609 0.0238 0.0158 0.0124 0.0180 0.0202 0.0459 0.0959 0.0750 0.0681 0.0687 0.0295 0.0445 0.0452 0.0310
Apulia 0.1292 0.1855 0.1187 0.0899 0.0568 0.0740 0.0671 0.0336 0.0652 0.0448 0.0838 0.1119 0.0749 0.1011 0.0868 0.0752 0.0648 0.0815 0.0377 0.0329
Basilicata 0.1458 0.1023 0.1134 0.1138 0.1805 0.0912 0.0738 0.0591 0.0644 0.0868 0.1330 0.0910 0.1812 0.1519 0.1127 0.0840 0.0963 0.0835 0.1176 0.1232
Calabria 0.0935 0.1185 0.1042 0.1338 0.0810 0.0709 0.0356 0.0273 0.0430 0.0438 0.0832 0.1009 0.1020 0.0957 0.0638 0.0615 0.0596 0.0578 0.0331 0.0318
Sicily 0.0898 0.0997 0.0824 0.0946 0.0800 0.0434 0.0225 0.0152 0.0172 0.0255 0.0717 0.0901 0.1213 0.1157 0.0619 0.0669 0.0342 0.0195 0.0357 0.0286
Sardinia 0.0877 0.1196 0.1768 0.0950 0.0731 0.0584 0.0435 0.0641 0.0418 0.0473 0.0907 0.0633 0.0947 0.0708 0.0902 0.0642 0.0487 0.0726 0.0400 0.0373
Bolzano 0.0872 0.1067 0.1314 0.1039 0.1968 0.2081 0.1892 0.2130 0.1454 0.1266 0.1531 0.1394 0.1575 0.1563 0.0933 0.1715 0.1763 0.2409 0.1897 0.2353
Trento 0.0749 0.0782 0.0960 0.1138 0.1203 0.1482 0.0776 0.1383 0.1105 0.1309 0.1116 0.0854 0.0931 0.1184 0.1024 0.1324 0.1022 0.1547 0.1036 0.1472

(f ) λ̂(1)
i,6

Piedmont 0.0678 0.0889 0.0979 0.1430 0.1657 0.2039 0.2426 0.3120 0.4211 0.4941 0.5065 0.3893 0.3005 0.1815 0.1281 0.0518 0.0421 0.0142 0.0147 0.0217
Aosta Valley 0.0496 0.0646 0.1495 0.0979 0.1680 0.1942 0.1943 0.2789 0.4678 0.2977 0.1994 0.1844 0.2606 0.2209 0.1952 0.1124 0.0632 0.0381 0.0332 0.0763
Lombardy 0.0529 0.0374 0.0969 0.1163 0.1603 0.2093 0.2708 0.3730 0.4790 0.6461 0.4626 0.3926 0.3005 0.2239 0.1554 0.1129 0.0735 0.0505 0.0526 0.0848
Veneto 0.0332 0.0498 0.0953 0.1477 0.1700 0.1947 0.2480 0.3140 0.4038 0.5086 0.4466 0.3217 0.2775 0.2015 0.1422 0.1097 0.0725 0.0330 0.0166 0.0393
Friuli-
Venezia
Giulia

0.0847 0.0643 0.0823 0.1874 0.2108 0.2415 0.2916 0.3695 0.4175 0.5118 0.5002 0.3970 0.2982 0.2667 0.2028 0.1859 0.1523 0.1205 0.1046 0.0918

Liguria 0.0315 0.0410 0.0549 0.0985 0.1483 0.1993 0.2462 0.3097 0.4146 0.5088 0.4003 0.3611 0.3050 0.1860 0.1315 0.0373 0.0191 0.0190 0.0321 0.0341
Emilia-
Romagna

0.0501 0.0543 0.0927 0.1262 0.1609 0.1812 0.2407 0.3295 0.4432 0.5633 0.4633 0.3516 0.2654 0.1970 0.1607 0.1064 0.0806 0.0659 0.0689 0.1024

Tuscany 0.0390 0.0493 0.1238 0.1758 0.2120 0.2416 0.2873 0.3647 0.4382 0.4945 0.5276 0.3833 0.2849 0.2262 0.1485 0.0981 0.0739 0.0661 0.0717 0.0856
Umbria 0.0564 0.1008 0.1385 0.1368 0.1854 0.1920 0.2639 0.3620 0.3943 0.5217 0.3925 0.3504 0.2497 0.2226 0.1590 0.1268 0.0737 0.0521 0.0544 0.0715
Marche 0.0738 0.0624 0.1198 0.1407 0.1522 0.1682 0.2194 0.2829 0.3637 0.4384 0.3767 0.3329 0.2302 0.2404 0.1337 0.0898 0.0440 0.0178 0.0243 0.0261
Lazio 0.0185 0.0388 0.1278 0.1783 0.2378 0.2649 0.3178 0.3906 0.4403 0.4977 0.5989 0.4095 0.3113 0.2687 0.1797 0.1458 0.1145 0.1041 0.1086 0.1597
Abruzzo 0.0648 0.0410 0.0615 0.0907 0.1458 0.1983 0.2245 0.2886 0.3287 0.3698 0.3840 0.3123 0.1636 0.1769 0.0693 0.0453 0.0132 0.0082 0.0157 0.0242
Molise 0.0895 0.0751 0.1470 0.0838 0.1024 0.1634 0.2202 0.2058 0.2718 0.1597 0.2215 0.3054 0.1844 0.0799 0.0728 0.0371 0.0381 0.0327 0.0413 0.0475
Campania 0.0153 0.0784 0.1552 0.1836 0.2480 0.2724 0.3174 0.3429 0.3528 0.3137 0.4698 0.4624 0.2846 0.2192 0.1144 0.0667 0.0519 0.0428 0.0351 0.0445
Apulia 0.0237 0.0532 0.1488 0.1566 0.1905 0.2501 0.2841 0.3546 0.4041 0.4525 0.4294 0.3503 0.2006 0.1486 0.0572 0.0356 0.0285 0.0516 0.0516 0.0948
Basilicata 0.0520 0.0456 0.0882 0.1105 0.1162 0.2022 0.2245 0.2738 0.3221 0.2888 0.3218 0.3177 0.1404 0.1258 0.0751 0.0291 0.0247 0.0398 0.0413 0.0691
Calabria 0.0195 0.0293 0.0644 0.0940 0.1537 0.1561 0.2250 0.2585 0.2649 0.2745 0.4172 0.2839 0.1368 0.0731 0.0267 0.0182 0.0227 0.0102 0.0139 0.0146
Sicily 0.0113 0.0553 0.0947 0.1402 0.1724 0.2132 0.2616 0.2969 0.3176 0.3113 0.4758 0.3929 0.2049 0.1002 0.0199 0.0239 0.0115 0.0052 0.0081 0.0107
Sardinia 0.0190 0.0482 0.1109 0.1677 0.1921 0.2078 0.2446 0.2941 0.3326 0.3662 0.5244 0.3642 0.2699 0.1750 0.0946 0.0579 0.0340 0.0135 0.0176 0.0244
Bolzano 0.0317 0.0678 0.0919 0.1078 0.1400 0.1998 0.1986 0.2206 0.2832 0.3775 0.2846 0.2579 0.2524 0.1796 0.2049 0.0811 0.0754 0.0482 0.0268 0.0680
Trento 0.0330 0.0417 0.0939 0.1596 0.1892 0.2102 0.2467 0.2710 0.3613 0.4489 0.2959 0.2875 0.1882 0.1989 0.1634 0.1600 0.0989 0.0556 0.0486 0.0617
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Figure 2. PAM classification of Italian regions based onλ
(1)
i,h1

. Horizontal axes in (b) denote latent classes.
(a) clusters and (b) medoids.

as shown in Figure 2(b). Lastly, Liguria forms its own cluster due to the significant role of
latent class h1 = 2 in defining the region’s mortality pattern over time.

The second layer tensor cores λ
(2)
t,h1,h2 and the third layer λ

(3)
k,h2 jointly identify the corre-

sponding latent classes denoted by h1. The λ
(2)
t,h1,h2 parameters correspond to time indices

T, and their posterior mean estimates are shown as time-evolving trajectories in Figure 3.
Meanwhile, λ

(3)
k,h2 assumes H2 latent structures that summarize 18 causes of death, as

displayed in Figure 4.
We begin our analysis with latent class h1 = 1, relevant to most female age groups bar-

ring the older population in southern Italy. Two trajectories within this class, characterized
bymortality ratesλ(3)

k,5 andλ
(3)
k,6 , are particularly significant.λ

(3)
k,5 primarily capturesCOVID-

19 mortality. Its corresponding trajectory λ
(2)
t,1,5 showcases a sudden weight spike for latent

class h2 = 5 around June 2020, a period of relative calm between the first and secondwaves
of the pandemic. This could be attributed to the time lag between COVID-19 infection
during the previous wave and subsequent deaths. Another spike related to this latent class
will be discussed later. The trajectory λ

(2)
t,1,6 demonstrates a counter-behavior to λ

(2)
t,1,5; it

decreases when the latter rises and vice versa. Notable causes of death represented by this
trajectory (λ(3)

k,6) include infectious and parasitic diseases; psychic and behavioral disorders;
diseases of the nervous system and sense organs; digestive system diseases; diseases of the
skin and subcutaneous tissue; and diseases of the musculoskeletal system and connective
tissue. Although the Poisson regression component revealed a global positive main effect
of COVID lockdown measures on the mortality rate of psychic and behavioral disorders,
this countervailing phenomenon does not contradict earlier arguments. As the discussed
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Figure 3. Trajectories of λ
(2)
t,h1,h2

for each latent class h1 = 1, . . . ,H1 from January 2015 to December

2020. Black horizontal lines represent the gamma prior mean γa/γb for λ
(2)
t,h1,h2

. (a) λ(2)
t,1,h2

. (b) λ(2)
t,2,h2

. (c)

λ
(2)
t,3,h2

. (d) λ(2)
t,4,h2

. (e) λ(2)
t,5,h2

and (f ) λ(2)
t,6,h2

.

Figure 4. Bar plots of λ(3)
k,h2

for 18 causes of death (horizontal axes) for each latent class h2 = 1, . . . ,H2.

Black horizontal lines represent the gamma prior mean εa/εb for λ
(3)
k,h2

. (a) λ(3)
k,1 . (b) λ

(3)
k,2 . (c) λ

(3)
k,3 . (d) λ

(3)
k,4 .

(e) λ(3)
k,5 and (f ) λ

(3)
k,6 .

latent class h1 = 1 is crucial to the female population, barring older ones in southern Italy,
it instead suggests a local compensation effect specific to this demographic group.

Latent class h1 = 2 is specific to the southern Italian regions of Campania, Calabria,
and Sicily. The key trajectory λ

(2)
t,2,1 within this class, shown in Figure 3(b), exhibits high

estimated mortality rates for endocrine, nutritional, and metabolic diseases as well as
symptoms, signs, abnormal results, and ill-defined causes (Figure 4(a)). This trajectory
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shows strong seasonality with peaks in both winter and summer. Previous research sug-
gests links between winter holidays and heat exposure with endocrine, nutritional, and
metabolic diseases [32,44]. The seasonal pattern of symptoms, signs, abnormal results, and
ill-defined causes may involve misclassified deaths related to seasonal illnesses.

Latent class h1 = 3 primarily explains mortality in females older than 85 years in north-
ern Italy and certainmale age groups in the south. This class depicts a pattern of COVID-19
mortality with two spikes in June 2020 and October 2020 (Figure 4(c)). The spike at the
end of the first wave may result from the time lag between contracting and dying from
COVID-19, as commented when analyzing latent class h1 = 1. The October spike antic-
ipates the second COVID-19 wave, potentially due to factors such as insufficient testing
and reporting, as well as unprepared health systems. We identify two types of displace-
ment between case peak andmortality peak. The first type arises from the time lag between
infection and death from COVID-19, while the second type predicts incoming COVID-
19 waves. The latter displacement was particularly true in 2020 when societal and health
system preparedness for the pandemic was low.

Latent class h1 = 4 represents the mortality composition of young male Italians in the
north and all populations in the south. The defining feature of this class is the down-
ward trend of trajectory λ

(2)
t,4,3 (Figure 3(d)). Further inspection of Figure 4(c) reveals

that endocrine, nutritional, and metabolic diseases; diseases of the circulatory system; and
external causes of trauma and poisoning define the mortality structure in λ

(3)
k,3 . These mor-

tality causes tend to be seasonal, with different effects in northern Italy and the south,
barring Campania, Calabria, and Sicily. For instance, a 2017 heatwave caused a notice-
able increase in deaths from endocrine, nutritional, and metabolic diseases in Campania,
Calabria, and Sicily, but the effect was less pronounced in the north. Additionally, these
diseases are more lethal for the older female population, as indicated in Table 3(b) and
Table 3(d). Seasonality in deaths from diseases of the circulatory system aligns with prior
research [12,39]. Lastly, the seasonality of external causes of trauma and poisoning may
largely result from increased traffic accidents in the winter and outdoor activities in the
summer.

Latent class h1 = 5, which is primarily significant for both males and females in north-
ern Italy, can be characterized by two main features. Firstly, the trajectory λ

(2)
t,5,2, which

represents the mortality rate of diseases of the respiratory system, displays a notable spike
aroundMarch and April 2020. This is a time when the health system in northern Italy was
overwhelmed and many COVID-19 related deaths may have been misclassified. A similar
point has been raised when interpreting coefficients of the Poisson regression component.
The second key feature of this latent class is the trajectory λ

(2)
t,5,5, which peaks twice: first in

February and then again in July 2020. Both types of displacement of COVID-19 mortality
rate appear in this class. The second type of displacement, which precedes the first wave of
COVID-19 (February and March 2020), is experienced by almost all males aged between
50 and 89 and females aged between 70 and 94 in northern Italy, with the exceptions of
Veneto and Friuli-Venezia Giulia. In contrast, the first type of displacement occurs only
for the older female population in northern Italy and certain male age groups in the south
at the beginning of the second wave, as previously illustrated.

Lastly, latent class h1 = 6 in Figure 3(f) is characterized by a constant trend of λ
(2)
t,6,4,

which is primarily defined by tumor and respiratory diseases (Figure 4(d)). Another
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notable trajectory within this class is λ
(2)
t,6,2, which captures the expected seasonality of res-

piratory disease deaths. This mortality structure is common to older male populations and
females under 69 across nearly all Italian regions.

6. Summary and future work

In this paper, we propose to model Poisson count data using the BPRTTD model. The
model comprises two components: a Poisson regression model and a tensor train decom-
position applied to the data organized as a tensor for estimating the latent parameter
space. The model and the Bayesian approach are validated via two simulation studies
and applied to monthly Italian mortality data, segmented by cause, from January 2015 to
December 2020. The regression component of our model effectively leverages covariate
information, allowing us to identify causes of death positively, negatively, and non-related
to government interventions during the COVID-19 pandemic. The tensor decomposi-
tion component enables further stratification of demographic profiles, based on unique
dynamic mortality structures over time. This is achieved by jointly characterizing profiles
by geographical location, sex, and age. Regional classifications are made, and the results
align with conventional conceptions. The impact of COVID-19 is also revealed in latent
tensor cores, with several causes of death, including infectious and parasitic diseases and
psychic and behavioral disorders, competing with COVID-19 mortality among specific
demographic groups. In the application, we arrange the data into a three-way tensor, but
the proposed methods can be directly applied to tensors of higher orders. The posterior
sampling algorithm needs to be adjusted accordingly, but no major conceptual changes
are required. However, we have not fully exploited the spatial-temporal information in
the data. For instance, instead of applying clustering algorithms to the posterior estimates,
one can introduce a reasonable metric and utilize geographic locations encoded in λ

(1)
i,h1

when specifying the model. λ
(2)
t,h1,h2 can also be modeled in a time series framework so

that temporal dependence can be inferred. Another potential direction for future research
involves the selection of tensor train ranks in the BPRTTD model, which plays a criti-
cal role in controlling model complexity. Model selection could be achieved by calculating
marginal likelihoods over pre-specified grids defined by tensor train ranks. However, given
the substantial computational load thiswould require, we reserve this exploration for future
work.
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